مأموریت:
-برای ارائه راه حل های داده هوشمند و مقیاس پذیر که با چشم انداز پویا بخش های مخابراتی و فناوری سازگار است. LLMS برای اتوماسیون ، شخصی سازی و تصمیم گیری پیشرفته. موارد استفاده را مشخص کنید و با کاربران نهایی برای استفاده از چابک استفاده کنید. سؤالات تجاری Mtnirancell.
-همکاری با تیم مدیریت داده ها برای اطمینان از این که استانداردهای صحیح با فرآیند توسعه خط لوله داده مطابقت دارد. و/یا تصمیمات.
-برای ساختن الگوریتم های با کارایی بالا ، نمونه های اولیه ، مدل های پیش بینی کننده و اثبات مفاهیم برای بررسی داده ها از دیدگاه های مختلف و تولید گزارش های بینش. فرصت ها را با استفاده از تکنیک های آماری ، الگوریتمی ، یادگیری ماشین ، داده کاوی و تکنیک های تجسم شناسایی کنید.
-برای ارائه و طراحی مدلهای داده با کارآمد که مطابق با کیفیت داده های موجود توسعه یافته اند. خطوط لوله استقرار برای موارد استفاده مربوطه مفاهیم مدل های بزرگ زبان (LLMS) و مهندسی سریع برای توسعه و تقویت برنامه های کاربردی هوش مصنوعی از راه دور از راه دور مانند چتبوت های هوشمند ، دستیاران مجازی و ابزارهای خلاصه.
-برای به کار بردن دانش پیشرفته و نتیجه گیری در مورد تجزیه و تحلیل/تحقیق در مورد فرصت های داده های علمی ، فرصت های مربوط به فروش ، جمعیتی استفاده ، و استفاده از آن به عنوان Tel-Cases مانند Tel-Castes به عنوان Tele-Castes برای دستیابی اطلاعات. مهارت های روایی برای برقراری ارتباط مؤثر بینش های پیچیده با ذینفعان مشاغل غیر فنی. در مهندسی ، تحقیقات عملیاتی ، محاسبات نرم ، علوم کامپیوتر ، تجزیه و تحلیل ، ریاضیات ، امور مالی محاسباتی یا آمار. ارائه
-forecasting
تجزیه و تحلیل استاتیک
-Data علوم
صلاحیت های رفتاری:
-با مراقبت
-can-do با یکپارچگی
-serve با احترام
-با چابکی همراه با چابکی با گنجاندن همراه است.
Mission:
- To deliver intelligent and scalable data solutions that adapt to the dynamic landscape of the telecom and technology sectors.
- To provide full-spectrum, data-driven approaches to address critical challenges in marketing, operations, and customer experience, enabling the Telco-to-Tech-Co transition.
- To drive innovation through advanced analytics, AI/ML, and Generative AI solutions, including the use of LLMs for automation, personalization, and enhanced decision-making.
- To unlock business value through monetization of internal data assets and enable data-driven products and partnerships aligned with MTNIrancell’s growth strategy.
Roles & Responsibilities:
- To liaise with various marketing/commercial teams to induct them of data science concepts to address business requirements.
- To collaborate with business partners to specify use cases and work with end users for agile use case improvement.
- To collaborate with subject matter experts to select the relevant sources of information and translate the business requirements into a data-scientific project.
- To work in cross-functional agile/scrum teams alongside product, network, and customer care to co-create and implement solutions aligned with business needs.
- To contribute to conducting undirected research and framing open-ended MTN Irancell business questions.
- To collaborate with the data governance team to ensure that the correct standards align with the data pipeline development process.
- To process huge volumes of data collected from multiple internal and external sources.
- To search and propose various ways to compensate for unavailable required data by conducting scientific experiments.
- To develop models and frames of business scenarios that are meaningful and affect critical business processes and/or decisions.
- To build high-performance algorithms, prototypes, predictive models, and proof of concepts to review data from various perspectives and generate insightful reports.
- To refine and tune data models to be able to respond to various homogeneous data structures.
- To exploit multiple new/existing algorithms for processing data to generate real business value.
- To discover insights and identify opportunities using statistical, algorithmic, machine learning, data mining, and visualization techniques.
- To propose and design data-efficient models that are smartly developed in accordance with the quality of existing data.
- To employ sophisticated analytics programs, machine learning, and statistical methods to do both predictive and prescriptive modeling.
- To implement MLOps practices, including model versioning, monitoring, and CI/CD deployment pipelines for the respective Use cases.
- To leverage advanced machine learning algorithms and models where appropriate.
- To integrate model explainability techniques such as SHAP and LIME to ensure transparent decision-making.
- To stay up to date with the latest trends in Generative AI and experiment with use cases such as automated insight summarization, chatbot enhancement, and personalized content delivery.
- To apply foundational concepts of Large Language Models (LLMs) and prompt engineering for developing and enhancing telecom-focused AI applications such as smart chatbots, virtual assistants, and summarization tools.
- To apply advanced knowledge and conclude the analysis/research around data-scientific opportunities, sales retention opportunities, market demographics, and use cases to achieve company strategies, such as tel-co to tech-co transition, utilizing internal/external market intelligence.
- To deploy scientific approaches to validate built models by quantifying the resulting accuracy.
- To analyze big data and work with related platforms to build data-driven business insights and high-impact data-scientific models to generate significant business value and present them to the management.
- To create and maintain interactive dashboards for visualizing campaign and offer performance.
- To develop strong data storytelling and narrative skills to effectively communicate complex insights to non-technical business stakeholders.
- To build value scoring models, audience insights, and data-as-a-service (DaaS) frameworks for
- monetization use cases.
Education:
- Bachelor's degree in Operations Research, Soft Computing, Computer Science, Analytics, Mathematics, Computational Finance, or Statistics.
Experience:
- At least 3 years of experience in an area of specialization (data science/data analysis experience is preferred).
- Experience working in a medium to large organization.
Technical Competencies:
- Reporting and analysis.
- Data visualization and presentation.
- Forecasting.
- Statistical analysis.
- Data science.
Behavioral Competencies:
- Lead with care.
- Can-do with integrity.
- Serve with respect.
- Collaborate with agility.
- Act with inclusion.