آموزش تحلیل داده با زبان برنامه نویسی R (پیشرفته)

در دوره آموزش تحلیل داده با زبان برنامه نویسی R (پیشرفته) دانشجویان با کاربردهای برخی از الگوریتم‌های یادگیری ماشین (Machine Learning) در کسب‌وکار و نحوه به‌کارگیری این الگوریتم‌ها روی داده‌های واقعی آشنا می‌شوند. رگرسیون خطی، رگرسیون لجستیک، خوشه‌بندی سلسله مراتبی، خوشه بندی kmeans و الگوریتم Naive Bayes و الگوریتم Apriori روش‌هایی هستند که در این درس آموزش داده می‌شوند. مباحث به‌گونه‌ای انتخاب شدند که بیشترین کاربردها را در دنیای کسب‌وکار داشته باشند و دانشجویان پس از یادگیری بتوانند آن‌ها را برای حل مسائل دنیای واقعی بکار ببرند. الگوریتم‌هایی آموزش داده‌شده در این درس، عمدتاً برای پیش‌بینی و کشف الگوها بکار می‌روند. پرسش‌هایی اساسی در کسب‌وکار نظیر موارد زیر با الگوریتم‌های بالا قابل پاسخ دادن هستند: • چگونه می‌توان رضایت مشتریان را از خدمات سازمان افزایش داد؟ • کدام‌یک از مشتریان سازمان سودآورتر از بقیه هستند؟ • چگونه تقلب را در حوزه‌های مختلف مانند ادعای خسارت در بیمه، پول‌شویی، هزینه‌های بیمارستانی و فرار مالیاتی شناسایی کنیم؟ • احتمال آن‌که فردی که متقاضی وام است، نتواند وام خود را پس دهد، چقدر است؟ • چگونه کاربران را بر اساس رفتار آن‌ها خوشه‌بندی کنیم و به هریک از آنان خدمات سفارشی‌شده ارائه دهیم؟ • چه بسته‌ای از محصولات را در کنار یکدیگر قرار دهیم تا فروش افزایش یابد؟

معرفی اجمالی دوره

در دوره آموزش تحلیل داده با زبان برنامه نویسی R (پیشرفته) دانشجویان با کاربردهای برخی از الگوریتم‌های یادگیری ماشین (Machine Learning) در کسب‌وکار و نحوه به‌کارگیری این الگوریتم‌ها روی داده‌های واقعی آشنا می‌شوند. رگرسیون خطی، رگرسیون لجستیک، خوشه‌بندی سلسله مراتبی، خوشه بندی kmeans و الگوریتم Naive Bayes و الگوریتم Apriori روش‌هایی هستند که در این درس آموزش داده می‌شوند. مباحث به‌گونه‌ای انتخاب شدند که بیشترین کاربردها را در دنیای کسب‌وکار داشته باشند و دانشجویان پس از یادگیری بتوانند آن‌ها را برای حل مسائل دنیای واقعی بکار ببرند. الگوریتم‌هایی آموزش داده‌شده در این درس، عمدتاً برای پیش‌بینی و کشف الگوها بکار می‌روند. پرسش‌هایی اساسی در کسب‌وکار نظیر موارد زیر با الگوریتم‌های بالا قابل پاسخ دادن هستند: • چگونه می‌توان رضایت مشتریان را از خدمات سازمان افزایش داد؟ • کدام‌یک از مشتریان سازمان سودآورتر از بقیه هستند؟ • چگونه تقلب را در حوزه‌های مختلف مانند ادعای خسارت در بیمه، پول‌شویی، هزینه‌های بیمارستانی و فرار مالیاتی شناسایی کنیم؟ • احتمال آن‌که فردی که متقاضی وام است، نتواند وام خود را پس دهد، چقدر است؟ • چگونه کاربران را بر اساس رفتار آن‌ها خوشه‌بندی کنیم و به هریک از آنان خدمات سفارشی‌شده ارائه دهیم؟ • چه بسته‌ای از محصولات را در کنار یکدیگر قرار دهیم تا فروش افزایش یابد؟

ویژگی‌های دوره

آنلاین، پروژه محور و تعاملی، همراه با تالار گفتگو و ارائه مدرک رسمی

فصول دوره

فصل اول - مقدمه
فصل دوم - رگرسیون خطی (Linear Regression)
فصل سوم - رگرسیون لجستیک (Logistic Regression)
فصل چهارم - بخش‌بندی بازار (Segmentation)
فصل پنجم - تحلیل سبد مشتریان (Market Basket Analysis);

معرفی مدرس

فرزادد مینویی
فرزاد مینویی فارغ‌التحصیل رشته مهندسی عمران و مدیریت کسب‌وکار (MBA) از دانشگاه صنعتی شریف است. وی تحصیلات خود را در دکترای مدیریت در دانشگاه کلورادو (University of Colorado) آمریکا ادامه داده است. زمینه‌های تخصصی او تصمیم‌گیری و مدیریت ریسک، هوش تجاری و مدیریت عملیات است. او تا قبل از ادامه تحصیل در دوره دکترا، در فاصله سال‌های ۱۳۸۴ تا ۱۳۹۴ در نقش‌های مدیریتی و مشاوره‌ای با شرکت‌های بخش خصوصی در ایران همکاری کرده است. در دوره دکترا به‌عنوان محقق بر روی پروژه‌های کاربردی که کارفرمای آن وزارت راه آمریکا و موسسه تحقیقاتی CII بوده، فعالیت کرده است. موسسه تحقیقاتی CII یک کنسرسیوم از شرکت‌های بزرگ فعال در صنعت نفت و گاز، فنی و مهندسی و تأمین‌کنندگان عمده آمریکاست. نتیجه فعالیت‌های تحقیقاتی او در مجلات معتبر علمی بین‌المللی چاپ شده‌اند. دکتر مینویی همچنین در چند سال گذشته به‌عنوان استاد مدعو درس هوش تجاری و مدیریت عملیات را برای دوره‌های کارشناسی ارشد دانشگاه تهران و دانشگاه شهید بهشتی برگزار کرده است. مخاطبان عمده این دوره‌ها مدیران ارشد و میانی شرکت‌های ایرانی بوده‌اند. تلاش او در این دوره‌ها این بوده تا با زبانی ساده و کاربردی مدیران صنعت را با مفاهیم تصمیم‌گیری داده محور و هوش تجاری آشنا کند. وی هم‌اکنون مشاوره چندین شرکت ایرانی است و آن‌ها را برای حرکت به سمت مدیریت داده محور هدایت می‌کند. او امیدوار است با به‌کارگیری تجربه‌های عملی خود در صنعت ایران و آمریکا و ترکیب آن با دانش تخصصی به مدیران کمک کند تا در مورد چالش‌هایی که با آن مواجه هستند، تصمیمات بهتری بگیرند.

پیش‌نیازها

آموزش آمار کاربردی برای تحلیل داده آموزش برنامه نویسی با زبان R(مقدماتی)

روش ارزیابی و نمره‌دهی

حد نصاب قبولی در دوره: 75.0 ، نمره فارغ‌التحصیل شدن در این دوره نیاز به ارسال تمرین‌ها و پروژه‌های الزامی دارد

نمونه گواهینامه

منبع: جاب ویژن
جاب ویژن
381,650 تومان
دریافت فایل
پنج‌شنبه 30 فروردین 1403، ساعت 17:31