آموزش رایگان بهبود شبکه‌های عصبی عمیق

کاربرد دوره آموزش بهبود شبکه‌های عصبی عمیق چیست؟ شبکه عصبی عمیق یک شبکه عصبی با سطح مشخصی از پیچیدگی و بیش از دولایه است. این نوع شبکه‌ها از مدل‌سازی سطح بالای ریاضی برای پردازش داده‌ها به روش‌های پیچیده استفاده می‌کنند. به‌طورکلی شبکه عصبی یک فناوری است که برای شبیه‌سازی فعالیت مغز انسان ساخته شده‌است؛ شناخت الگو و عبور ورودی از طریق لایه‌های اتصالات عصبی شبیه‌سازی شده مختلف از مهم‌ترین این فعالیت‌هاست. بسیاری از کارشناسان شبکه‌های عصبی عمیق را شبکه‌هایی تعریف می‌کنند که یک‌لایه ورودی، یک‌لایه خروجی و حداقل یک‌لایه پنهان در بین آن‌ها دارند. هر لایه نوع خاصی از مرتب‌سازی و ترتیب را در فرایندها انجام می‌دهند. یکی از کاربردهای کلیدی شبکه عصبی عمیق سروکار داشتن با داده‌های بدون برچسب یا ساختار نیافته است. عبارت یادگیری عمیق هم برای توصیف این شبکه‌های عصبی عمیق به کار می‌رود؛ چراکه یادگیری عمیق شکل خاصی از یادگیری ماشین را نشان می‌دهد که در آن فناوری‌ها با استفاده از جنبه‌های هوش مصنوعی به دنبال طبقه‌بندی و تنظیم اطلاعات فراتر از پروتکل‌های ساده ورودی و خروجی هستند. هدف از یادگیری دوره آموزش بهبود شبکه‌های عصبی عمیق چیست؟ آموزش بهبود شبکه عصبی عمیق، دومین دوره از مجموعه تخصص یادگیری عمیق اندرو می‌باشد. هدف از این دوره این است که بتوانید فرایندهایی که منجر به کارایی می‌شوند و به طور سیستماتیک نتایج خوبی به بار می‌آورند، را درک کنید. در پایان این دوره شما خواهید توانست بهترین روش‌ها را برای آموزش و توسعه مجموعه‌های آزمون و تجزیه و تحلیل بایاس واریانس استفاده کرده و آن‌ها را برای ایجاد برنامه‌های یادگیری عمیق به کار ببرید. دوره آموزش بهبود شبکه‌های عصبی عمیق مناسب چه کسانی است؟ کسانی که با هوش مصنوعی آشنایی دارند و می‌خواهند مهارت‌های خود را ارتقا دهند. برنامه‌نویسانی که به کار کردن در حوزه بهبود شبکه عصبی عمیق علاقه‌مندند. دانشجویان علوم مهندسی، پزشکی و پایه بعد از فراگیری دوره آموزش بهبود شبکه‌های عصبی عمیق چه مهارت‌هایی کسب خواهید کرد؟ با گذراندن این دوره مهارت‌های شما در زمینه بهبود شبکه‌های عصبی عمیق ارتقا پیدا خواهد کرد و می‌توانید از تکنیک‌های استاندارد شبکه عصبی عمیق استفاده کنید. این تکنیک‌ها عبارت‌اند از: تنسورفلو (Tensorflow) یادگیری عمیق بهینه‌سازی ریاضی تنظیم هایپر پارامترها مقداردهی اولیه نرمال‌سازی بسته‌ها پیاده‌سازی و به‌کارگیری انواع الگوریتم‌های بهینه‌سازی

معرفی اجمالی دوره

کاربرد دوره آموزش بهبود شبکه‌های عصبی عمیق چیست؟ شبکه عصبی عمیق یک شبکه عصبی با سطح مشخصی از پیچیدگی و بیش از دولایه است. این نوع شبکه‌ها از مدل‌سازی سطح بالای ریاضی برای پردازش داده‌ها به روش‌های پیچیده استفاده می‌کنند. به‌طورکلی شبکه عصبی یک فناوری است که برای شبیه‌سازی فعالیت مغز انسان ساخته شده‌است؛ شناخت الگو و عبور ورودی از طریق لایه‌های اتصالات عصبی شبیه‌سازی شده مختلف از مهم‌ترین این فعالیت‌هاست. بسیاری از کارشناسان شبکه‌های عصبی عمیق را شبکه‌هایی تعریف می‌کنند که یک‌لایه ورودی، یک‌لایه خروجی و حداقل یک‌لایه پنهان در بین آن‌ها دارند. هر لایه نوع خاصی از مرتب‌سازی و ترتیب را در فرایندها انجام می‌دهند. یکی از کاربردهای کلیدی شبکه عصبی عمیق سروکار داشتن با داده‌های بدون برچسب یا ساختار نیافته است. عبارت یادگیری عمیق هم برای توصیف این شبکه‌های عصبی عمیق به کار می‌رود؛ چراکه یادگیری عمیق شکل خاصی از یادگیری ماشین را نشان می‌دهد که در آن فناوری‌ها با استفاده از جنبه‌های هوش مصنوعی به دنبال طبقه‌بندی و تنظیم اطلاعات فراتر از پروتکل‌های ساده ورودی و خروجی هستند. هدف از یادگیری دوره آموزش بهبود شبکه‌های عصبی عمیق چیست؟ آموزش بهبود شبکه عصبی عمیق، دومین دوره از مجموعه تخصص یادگیری عمیق اندرو می‌باشد. هدف از این دوره این است که بتوانید فرایندهایی که منجر به کارایی می‌شوند و به طور سیستماتیک نتایج خوبی به بار می‌آورند، را درک کنید. در پایان این دوره شما خواهید توانست بهترین روش‌ها را برای آموزش و توسعه مجموعه‌های آزمون و تجزیه و تحلیل بایاس واریانس استفاده کرده و آن‌ها را برای ایجاد برنامه‌های یادگیری عمیق به کار ببرید. دوره آموزش بهبود شبکه‌های عصبی عمیق مناسب چه کسانی است؟ کسانی که با هوش مصنوعی آشنایی دارند و می‌خواهند مهارت‌های خود را ارتقا دهند. برنامه‌نویسانی که به کار کردن در حوزه بهبود شبکه عصبی عمیق علاقه‌مندند. دانشجویان علوم مهندسی، پزشکی و پایه بعد از فراگیری دوره آموزش بهبود شبکه‌های عصبی عمیق چه مهارت‌هایی کسب خواهید کرد؟ با گذراندن این دوره مهارت‌های شما در زمینه بهبود شبکه‌های عصبی عمیق ارتقا پیدا خواهد کرد و می‌توانید از تکنیک‌های استاندارد شبکه عصبی عمیق استفاده کنید. این تکنیک‌ها عبارت‌اند از: تنسورفلو (Tensorflow) یادگیری عمیق بهینه‌سازی ریاضی تنظیم هایپر پارامترها مقداردهی اولیه نرمال‌سازی بسته‌ها پیاده‌سازی و به‌کارگیری انواع الگوریتم‌های بهینه‌سازی

ویژگی‌های دوره

-گواهی‌نامه مکتب‌خونه -خدمات منتورینگ -پروژه محور -تمرین و آزمون -تالار گفتگو -تسهیل استخدام

فصول دوره

-فصل اول: جنبه‎‌های عملیاتی یادگیری عمیق
-فصل دوم: الگوریتم‌های بهینه‌سازی
-فصل سوم: تنظیم ابرپارامترها، نرمال‌سازی دسته‌ای و چارچوب‌های برنامه‌نویسی;

معرفی مدرس

Andrew Ng
اندرو ان جی استاد دانشکده علوم کامپیوتر دانشگاه استنفورد و سرپرست آزمایشگاه هوش مصنوعی استنفورد است. وی هم چنین بنیان‌گذار کورسرا (coursera.org) است و بر اساس گزارش تکنولوژی دانشگاه ام ای تی یکی از 35 مخترع برتر جوان دنیا هست. او دکتری خود را از دانشگاه کالیفرنیا برکلی گرفته و زمینه‌های پژوهش او هوش مصنوعی و علوم رباتیک است.

پیش‌نیازها

این آموزش دومین دوره از مجموعه تخصص یادگیری عمیق اندرو بوده به آموزش بهبود شبکه عصبی عمیق می‌پردازد؛ بنابراین برای درک کامل موارد ذکرشده در این دوره شما باید با این شبکه‌ها آشنایی داشته باشید. تسلط بر یکی از زبان‌های برنامه‌نویسی و آشنایی با مدل‌سازی و مباحث ریاضیاتی برای شرکت در این دوره ضروری است.

روش ارزیابی و نمره‌دهی

حد نصاب قبولی در دوره: 75.0 نمره فارغ‌التحصیل شدن در این دوره نیاز به ارسال تمرین‌ها و پروژه‌های الزامی دارد.

نمونه گواهینامه

منبع: جاب ویژن
جاب ویژن
118,150 تومان
دریافت فایل
جمعه 22 تیر 1403، ساعت 23:13