دوره یادگیری عمیق با تنسورفلو و کراس

دوره آموزش یادگیری عمیق با تنسورفلو و کراس چیست؟ دوره آموزش یادگیری عمیق با تنسورفلو و کراس به آموزش کاربردی یادگیری عمیق و تمام مباحث مربوط به کتابخانه‌­های تنسورفلو و کراس می‌­پردازد. به طور مشخص­‌تر موضوعاتی که در این دوره دنبال می‌­شود شامل موارد زیر است: پیاده‌­سازی شبکه‌­های عصبی (یادگیری عمیق) در پایتون پیاده‌­سازی شبکه­‌های Multi-layer perceptron (MLP) و Convolutional بحث و بررسی در رابطه با موضوعات گوناگون یادگیری عمیق مانند: Transfer learning، Overfitting و Regularization بررسی دقیق و عمیق تنسورفلو و کراس آشنایی با یادگیری عمیق، تنسورفلو و کراس در یک تعریف کلی، یادگیری عمیق یکی از شاخه­‌های یادگیری ماشین و هوش مصنوعی است که در آن سعی می­‌شود از روش کارکرد مغز برای یادگیری موضوعات استفاده شود. در یادگیری عمیق به کامپیوترها آموزش داده می‌­شود که برای حل مسائل از روش­‌هایی استفاده کنند که مغز انسان برای حل مسائل از آن روش‌­ها استفاده می‌­کند. به طور کلی یادگیری عمیق سعی می‌­کند به شبیه‌سازی مغز انسان بپردازد. «تنسورفلو» (TensorFlow)، یک کتابخانه رایگان و اوپن سورس است که کاربردهای زیادی در یادگیری ماشین دارد. یکی از اصلی‌­ترین کاربردهای تنسورفلو در پیاده‌­سازی شبکه­‌های عصبی است. به همین دلیل است که این کتابخانه، پراستفاده‌­ترین کتابخانه در یادگیری عمیق است. کراس یک کتابخانه در تنسورفلو است که با هدف توسعه شبکه‌­های عصبی ایجاد شده است. هدف از برگزاری دوره آموزش یادگیری عمیق با تنسورفلو و کراس چیست؟ امروزه اهمیت یادگیری عمیق در بسیاری از تکنولوژی‌­ها بر کسی پوشیده نیست؛ تا جایی که در دنیای امروز یادگیری عمیق به مغز محاسباتی در بسیاری از زمینه­‌های علم و تکنولوژی تبدیل شده است. به همین دلیل است که در دنیایی از صنایع مختلف تا تکنولوژی‌­های مختلف، تقریبا هیچ موردی را نمی‌­توان پیدا کرد که در آن ردپایی از یادگیری عمیق دیده نشود. به این ترتیب، اصلی­‌ترین هدف این دوره آموزش کاربردی یادگیری عمیق و شناخت ابعاد گوناگون آن است. در این دوره شما با این ابزار بسیار مهم به ­صورت عملیاتی آشنا می‌­شوید و جزئیات لازم برای پیاده‌­سازی بهینه این الگوریتم‌ها را در عمل می­‌آموزید. در ادامه راه می‌­توانید از این ابزار در هر زمینه‌­ای که با داده روبه‌­رو می‌شوید و به دنبال پیدا کردن الگوهای آن هستید، استفاده کنید. دوره آموزش یادگیری عمیق با تنسورفلو و کراس برای چه کسانی مناسب است؟ محتوای این دوره به نحوی انتخاب شده که مناسب افرادی باشد که دوره یادگیری ماشین را گذرانده‌اند و با مفاهیم ابتدایی هوش مصنوعی آشنایی دارند و به دنبال ادامه مسیر یادگیری/شغلی در این زمینه هستند. با توجه به اینکه این دوره ترکیب آموزش مفاهیم تئوری و عملی در کنار یکدیگر است، دانشجویان این دوره می‌توانند مسائل دنیای واقعی مثل پردازش تصویر، پردازش زبان طبیعی، پیش‌بینی‌های دنباله‌های عددی و ترافیک و غیره را حل کنند. بنابراین این دوره مناسب کسانی خواهند بود که علاقه‌مند به مباحث پیشرفته هوش مصنوعی و چالش‌های لبه‌ی تکنولوژی هستند. در انتهای دوره آموزش یادگیری عمیق با تنسورفلو و کراس مخاطب چه دستاوردی خواهد داشت؟ با توجه به محتوایی که در این دوره به شرکت‌­کنندگان آموزش داده می‌­شود، در انتهای دوره مخاطبان محترم با موارد زیر آشنایی خواهند داشت: پیاده­‌سازی شبکه‌­های MLP پیاده‌­سازی شبکه­‌های Sequential، Functional و Subclass بهینه­‌سازی پارامترهای شبکه­‌های عصبی شناخت ترکیب مناسب activation function و initialization شناخت بهینه‌­ساز­ها و برنامه‌­های زمانی متناسب شناخت راهکارهای مقابله با Overfitting شناخت ابزار لازم برای ارزیابی عدم قطعیت پیش‌بینی شبکه­‌های عصبی پیاده‌سازی Transfer learning و استفاده از شبکه­‌های قدرتمند آماده پیاده‌­سازی شبکه­‌های Convolutional

معرفی اجمالی دوره

دوره آموزش یادگیری عمیق با تنسورفلو و کراس چیست؟ دوره آموزش یادگیری عمیق با تنسورفلو و کراس به آموزش کاربردی یادگیری عمیق و تمام مباحث مربوط به کتابخانه‌­های تنسورفلو و کراس می‌­پردازد. به طور مشخص­‌تر موضوعاتی که در این دوره دنبال می‌­شود شامل موارد زیر است: پیاده‌­سازی شبکه‌­های عصبی (یادگیری عمیق) در پایتون پیاده‌­سازی شبکه­‌های Multi-layer perceptron (MLP) و Convolutional بحث و بررسی در رابطه با موضوعات گوناگون یادگیری عمیق مانند: Transfer learning، Overfitting و Regularization بررسی دقیق و عمیق تنسورفلو و کراس آشنایی با یادگیری عمیق، تنسورفلو و کراس در یک تعریف کلی، یادگیری عمیق یکی از شاخه­‌های یادگیری ماشین و هوش مصنوعی است که در آن سعی می­‌شود از روش کارکرد مغز برای یادگیری موضوعات استفاده شود. در یادگیری عمیق به کامپیوترها آموزش داده می‌­شود که برای حل مسائل از روش­‌هایی استفاده کنند که مغز انسان برای حل مسائل از آن روش‌­ها استفاده می‌­کند. به طور کلی یادگیری عمیق سعی می‌­کند به شبیه‌سازی مغز انسان بپردازد. «تنسورفلو» (TensorFlow)، یک کتابخانه رایگان و اوپن سورس است که کاربردهای زیادی در یادگیری ماشین دارد. یکی از اصلی‌­ترین کاربردهای تنسورفلو در پیاده‌­سازی شبکه­‌های عصبی است. به همین دلیل است که این کتابخانه، پراستفاده‌­ترین کتابخانه در یادگیری عمیق است. کراس یک کتابخانه در تنسورفلو است که با هدف توسعه شبکه‌­های عصبی ایجاد شده است. هدف از برگزاری دوره آموزش یادگیری عمیق با تنسورفلو و کراس چیست؟ امروزه اهمیت یادگیری عمیق در بسیاری از تکنولوژی‌­ها بر کسی پوشیده نیست؛ تا جایی که در دنیای امروز یادگیری عمیق به مغز محاسباتی در بسیاری از زمینه­‌های علم و تکنولوژی تبدیل شده است. به همین دلیل است که در دنیایی از صنایع مختلف تا تکنولوژی‌­های مختلف، تقریبا هیچ موردی را نمی‌­توان پیدا کرد که در آن ردپایی از یادگیری عمیق دیده نشود. به این ترتیب، اصلی­‌ترین هدف این دوره آموزش کاربردی یادگیری عمیق و شناخت ابعاد گوناگون آن است. در این دوره شما با این ابزار بسیار مهم به ­صورت عملیاتی آشنا می‌­شوید و جزئیات لازم برای پیاده‌­سازی بهینه این الگوریتم‌ها را در عمل می­‌آموزید. در ادامه راه می‌­توانید از این ابزار در هر زمینه‌­ای که با داده روبه‌­رو می‌شوید و به دنبال پیدا کردن الگوهای آن هستید، استفاده کنید. دوره آموزش یادگیری عمیق با تنسورفلو و کراس برای چه کسانی مناسب است؟ محتوای این دوره به نحوی انتخاب شده که مناسب افرادی باشد که دوره یادگیری ماشین را گذرانده‌اند و با مفاهیم ابتدایی هوش مصنوعی آشنایی دارند و به دنبال ادامه مسیر یادگیری/شغلی در این زمینه هستند. با توجه به اینکه این دوره ترکیب آموزش مفاهیم تئوری و عملی در کنار یکدیگر است، دانشجویان این دوره می‌توانند مسائل دنیای واقعی مثل پردازش تصویر، پردازش زبان طبیعی، پیش‌بینی‌های دنباله‌های عددی و ترافیک و غیره را حل کنند. بنابراین این دوره مناسب کسانی خواهند بود که علاقه‌مند به مباحث پیشرفته هوش مصنوعی و چالش‌های لبه‌ی تکنولوژی هستند. در انتهای دوره آموزش یادگیری عمیق با تنسورفلو و کراس مخاطب چه دستاوردی خواهد داشت؟ با توجه به محتوایی که در این دوره به شرکت‌­کنندگان آموزش داده می‌­شود، در انتهای دوره مخاطبان محترم با موارد زیر آشنایی خواهند داشت: پیاده­‌سازی شبکه‌­های MLP پیاده‌­سازی شبکه­‌های Sequential، Functional و Subclass بهینه­‌سازی پارامترهای شبکه­‌های عصبی شناخت ترکیب مناسب activation function و initialization شناخت بهینه‌­ساز­ها و برنامه‌­های زمانی متناسب شناخت راهکارهای مقابله با Overfitting شناخت ابزار لازم برای ارزیابی عدم قطعیت پیش‌بینی شبکه­‌های عصبی پیاده‌سازی Transfer learning و استفاده از شبکه­‌های قدرتمند آماده پیاده‌­سازی شبکه­‌های Convolutional

ویژگی‌های دوره

گواهی‌نامه مکتب‌خونه خدمات منتورینگ پروژه محور تمرین و آزمون تالار گفتگو تسهیل استخدام

فصول دوره

مقدمه‌ای بر یادگیری ماشین
مبانی یادگیری عمیق
شبکه عصبی عمیق
شبکه کانولوشنال عمیق;

معرفی مدرس

پژمان اقبالی
پژمان اقبالی دانشجوی دکتری بیومکانیک در دانشگاه EPFL سوئیس است. وی دارای تجربه تدریس مباحث علوم کامپیوتر مخصوصاً برنامه‌نویسی محاسباتی است. او سابقه‌ی تدریس برنامه‌نویسی پایتون، متلب و R، محاسبات علمی، بهینه‌سازی، علم داده و یادگیری ماشین را دارد. ایشان در حال حاضر بر روی توسعه‌ی مدل‌های آماری و یادگیری ماشین برای تحلیل داده‌های پزشکی کار می‌کند. حوزه‌های تخصصی او برنامه‌نویسی محاسباتی، آمار و یادگیری ماشین، مدل‌های اجزای محدود و بهینه‌سازی است.

پیش‌نیازها

در تمام مراحل این دوره برای راحتی شرکت­‌کنندگان سعی شده است تا تمامی مباحث به زبانی ساده بیان شوند؛ اما برای درک کامل مباحث مطرح شده لازم است تا مخاطب با موارد زیر آشنایی داشته باشد: آشنایی با مفاهیم برنامه‌­نویسی پایتون آشنایی با مباحث مربوط به یادگیری ماشین آشنایی با کتابخانه­‌های Scikit-learn، Numpy، Matplotlib

روش ارزیابی و نمره‌دهی

حد نصاب قبولی در دوره: 70.0 نمره فارغ‌التحصیل شدن در این دوره نیاز به ارسال تمرین‌ها و پروژه‌های الزامی دارد.

نمونه گواهینامه

منبع: جاب ویژن
جاب ویژن
832,150 تومان
دریافت فایل
شنبه 30 تیر 1403، ساعت 18:56