آموزش شبکه عصبی و یادگیری عمیق

کاربرد دوره آموزش شبکه عصبی و یادگیری عمیق چیست؟ امروزه در علوم کامپیوتر دو مبحث بسیار مهم با نام شبکه عصبی و یادگیری عمیق پدید آمده است. شبکه‌های عصبی دسته‌ای از الگوهای برنامه‌نویسی هستند که برای آموختن از داده‌های مشاهده‌ای از زیست‌شناسی الهام گرفته‌اند. به عبارت ساده‌تر، این شبکه‌ها برای یادگیری از نحوه عملکرد مغز بهره می‌برند. یادگیری عمیق مجموعه قدرتمندی از تکنیک‌ها برای یادگیری در شبکه‌های عصبی است. در واقع یادگیری عمیق زیرشاخه‌ای از یادگیری ماشین محسوب می‌شود و شبکه‌های عصبی اسکلت یادگیری عمیق را تشکیل می‌دهند. شبکه‌های عصبی و یادگیری عمیق در حال حاضر بهترین راه‌حل‌ها را برای بسیاری از مشکلات در تشخیص تصویر، تشخیص گفتار و پردازش زبان طبیعی (natural language processing) ارائه می‌دهند. اگر شما هم از علاقه‌مندان و فعالان حوزه تکنولوژی‌های نوظهور هستید، آموزش شبکه عصبی مصنوعی و یادگیری عمیق مکتب‌خونه را از دست ندهید. هدف از آموزش شبکه عصبی و یادگیری عمیق چیست؟ آموزش شبکه‌های عصبی و یادگیری عمیق، اولین دوره از مجموعه تخصص یادگیری عمیق اندرو می‌باشد. در این دوره شما با مفاهیم بنیادی شبکه عصبی و یادگیری عمیق آشنا خواهید شد. این دوره به شما کمک می‌کند که قابلیت‌ها، چالش‌ها و پیامدهای یادگیری عمیق را درک کنید. همچنین آموزش یادگیری عمیق شما را برای مشارکت در توسعه فناوری پیشرفته هوش مصنوعی آماده می‌کند. بنابراین این دوره مسیری برای شما فراهم می‌کند که دانش و مهارت لازم را برای استفاده از یادگیری ماشین در کار خود کسب کنید، سطح فنی خود را ارتقا داده و گام نهایی را برای ورود به دنیای هوش مصنوعی بردارید. بعد از فراگیری دوره آموزش شبکه عصبی و یادگیری عمیق چه مهارت‌هایی کسب خواهید کرد؟ آشنایی با یادگیری عمیق آشنایی با شبکه عصبی مصنوعی برنامه‌نویسی پایتون روش پس انتشار (Backpropagation) معماری شبکه عصبی

معرفی اجمالی دوره

کاربرد دوره آموزش شبکه عصبی و یادگیری عمیق چیست؟ امروزه در علوم کامپیوتر دو مبحث بسیار مهم با نام شبکه عصبی و یادگیری عمیق پدید آمده است. شبکه‌های عصبی دسته‌ای از الگوهای برنامه‌نویسی هستند که برای آموختن از داده‌های مشاهده‌ای از زیست‌شناسی الهام گرفته‌اند. به عبارت ساده‌تر، این شبکه‌ها برای یادگیری از نحوه عملکرد مغز بهره می‌برند. یادگیری عمیق مجموعه قدرتمندی از تکنیک‌ها برای یادگیری در شبکه‌های عصبی است. در واقع یادگیری عمیق زیرشاخه‌ای از یادگیری ماشین محسوب می‌شود و شبکه‌های عصبی اسکلت یادگیری عمیق را تشکیل می‌دهند. شبکه‌های عصبی و یادگیری عمیق در حال حاضر بهترین راه‌حل‌ها را برای بسیاری از مشکلات در تشخیص تصویر، تشخیص گفتار و پردازش زبان طبیعی (natural language processing) ارائه می‌دهند. اگر شما هم از علاقه‌مندان و فعالان حوزه تکنولوژی‌های نوظهور هستید، آموزش شبکه عصبی مصنوعی و یادگیری عمیق مکتب‌خونه را از دست ندهید. هدف از آموزش شبکه عصبی و یادگیری عمیق چیست؟ آموزش شبکه‌های عصبی و یادگیری عمیق، اولین دوره از مجموعه تخصص یادگیری عمیق اندرو می‌باشد. در این دوره شما با مفاهیم بنیادی شبکه عصبی و یادگیری عمیق آشنا خواهید شد. این دوره به شما کمک می‌کند که قابلیت‌ها، چالش‌ها و پیامدهای یادگیری عمیق را درک کنید. همچنین آموزش یادگیری عمیق شما را برای مشارکت در توسعه فناوری پیشرفته هوش مصنوعی آماده می‌کند. بنابراین این دوره مسیری برای شما فراهم می‌کند که دانش و مهارت لازم را برای استفاده از یادگیری ماشین در کار خود کسب کنید، سطح فنی خود را ارتقا داده و گام نهایی را برای ورود به دنیای هوش مصنوعی بردارید. بعد از فراگیری دوره آموزش شبکه عصبی و یادگیری عمیق چه مهارت‌هایی کسب خواهید کرد؟ آشنایی با یادگیری عمیق آشنایی با شبکه عصبی مصنوعی برنامه‌نویسی پایتون روش پس انتشار (Backpropagation) معماری شبکه عصبی

ویژگی‌های دوره

خدمات منتورینگ پروژه محور تمرین و آزمون تالار گفتگو تسهیل استخدام زیرنویس فارسی

فصول دوره

فصل اول: مقدمه‌ای بر یادگیری عمیق
فصل دوم: شبکه عصبی پایه
فصل سوم: پایتون و برداری‌کردن
فصل چهارم: شبکه عصبی سطحی
فصل پنجم: شبکه عصبی عمیق;

معرفی مدرس

Andrew Ng
اندرو ان جی استاد دانشکده علوم کامپیوتر دانشگاه استنفورد و سرپرست آزمایشگاه هوش مصنوعی استنفورد است. وی هم چنین بنیان‌گذار کورسرا (coursera.org) است و بر اساس گزارش تکنولوژی دانشگاه ام ای تی یکی از 35 مخترع برتر جوان دنیا هست. او دکتری خود را از دانشگاه کالیفرنیا برکلی گرفته و زمینه‌های پژوهش او هوش مصنوعی و علوم رباتیک است.

روش ارزیابی و نمره‌دهی

حد نصاب قبولی در دوره: 75.0 نمره فارغ‌التحصیل شدن در این دوره نیاز به ارسال تمرین‌ها و پروژه‌های الزامی دارد.

نمونه گواهینامه

منبع: جاب ویژن
جاب ویژن
67,150 تومان
دریافت فایل
شنبه 30 تیر 1403، ساعت 15:56