آموزش شبکه‌های عصبی کانولوشنالی

کاربرد دوره آموزش شبکه عصبی کانولوشن چیست؟ شبکه عصبی کانولوشنال یا پیچشی (CNN) نوعی شبکه عصبی مصنوعی است که برای شناسایی و پردازش تصویر استفاده می‌شود. این شبکه‌ها اختصاصاً برای پردازش داده‌های پیکسلی طراحی شده‌اند. CNNها پردازش تصویر و هوش مصنوعی قدرتمندی هستند که با استفاده از یادگیری عمیق (Deep Learning) کارهای تولیدی و توصیفی را انجام می‌دهند. این شبکه‌ها اغلب از دید ماشینی که شامل تشخیص تصویر و ویدئو به همراه سیستم‌های توصیه‌گر و پردازش زبان طبیعی (NLP) می‌شود، استفاده می‌کنند. یک شبکه عصبی سیستمی از سخت‌افزار و یا نرم‌افزار است که از عملکرد سلول‌های عصبی در مغز انسان الگو می‌گیرد. شبکه‌های عصبی سنتی برای پردازش تصویر ایده‌آل نیستند. اما در شبکه عصبی پیچشی لایه‌های نورون به شکلی تنظیم شده است که برای جلوگیری از مشکل در پردازش تصویر، کل میدان بینایی را پوشش می‌دهند. لایه‌های شبکه عصبی کانولوشنال یا شبکه عصبی پیچشی، از یک لایه ورودی، یک لایه خروجی و یک لایه پنهان تشکیل شده است که شامل چندین لایه کانولوشن می‌شود. حذف محدودیت‌ها و افزایش کارایی منجر به تشکیل سیستمی می‌شود که بسیار از حالت عادی اثربخش‌تر است و همچنین برای پردازش تصویر و زبان طبیعی قدرت بیشتری خواهد داشت. بعد از فراگیری دوره آموزش شبکه عصبی کانولوشنالی چه مهارت‌هایی کسب خواهید کرد؟ آموزش بهبود شبکه عصبی عمیق، چهارمین دوره از مجموعه تخصص یادگیری عمیق اندرو می‌باشد. در پایان دوره آموزش شبکه عصبی کانولوشنال شما قادر خواهید بود شبکه عصبی مخصوص خود را بسازید. در این دوره حتی ساخت مدرن‌ترین انواع شبکه عصبی پیچشی به شما آموزش داده می‌شود. در پایان این دوره همچنین می‌توانید از شبکه عصبی پیچشی موجود، برای پردازش تصویر و تشخیص افراد یا اشیا در آن، کار با عکس، فیلم و انیمیشن و ده‌ها کاربرد جذاب دیگر استفاده کنید. به طور کلی می‌توان گفت در پایان این دوره، مهارت‌های زیر در شما تقویت شده یا به مهارت‌های شما افزوده می‌شوند: یادگیری عمیق طراحی سیستم تشخیص چهره کار با شبکه عصبی پیچشی Tensorflow کشف شیء و بخش‌بندی تصویر

معرفی اجمالی دوره

کاربرد دوره آموزش شبکه عصبی کانولوشن چیست؟ شبکه عصبی کانولوشنال یا پیچشی (CNN) نوعی شبکه عصبی مصنوعی است که برای شناسایی و پردازش تصویر استفاده می‌شود. این شبکه‌ها اختصاصاً برای پردازش داده‌های پیکسلی طراحی شده‌اند. CNNها پردازش تصویر و هوش مصنوعی قدرتمندی هستند که با استفاده از یادگیری عمیق (Deep Learning) کارهای تولیدی و توصیفی را انجام می‌دهند. این شبکه‌ها اغلب از دید ماشینی که شامل تشخیص تصویر و ویدئو به همراه سیستم‌های توصیه‌گر و پردازش زبان طبیعی (NLP) می‌شود، استفاده می‌کنند. یک شبکه عصبی سیستمی از سخت‌افزار و یا نرم‌افزار است که از عملکرد سلول‌های عصبی در مغز انسان الگو می‌گیرد. شبکه‌های عصبی سنتی برای پردازش تصویر ایده‌آل نیستند. اما در شبکه عصبی پیچشی لایه‌های نورون به شکلی تنظیم شده است که برای جلوگیری از مشکل در پردازش تصویر، کل میدان بینایی را پوشش می‌دهند. لایه‌های شبکه عصبی کانولوشنال یا شبکه عصبی پیچشی، از یک لایه ورودی، یک لایه خروجی و یک لایه پنهان تشکیل شده است که شامل چندین لایه کانولوشن می‌شود. حذف محدودیت‌ها و افزایش کارایی منجر به تشکیل سیستمی می‌شود که بسیار از حالت عادی اثربخش‌تر است و همچنین برای پردازش تصویر و زبان طبیعی قدرت بیشتری خواهد داشت. بعد از فراگیری دوره آموزش شبکه عصبی کانولوشنالی چه مهارت‌هایی کسب خواهید کرد؟ آموزش بهبود شبکه عصبی عمیق، چهارمین دوره از مجموعه تخصص یادگیری عمیق اندرو می‌باشد. در پایان دوره آموزش شبکه عصبی کانولوشنال شما قادر خواهید بود شبکه عصبی مخصوص خود را بسازید. در این دوره حتی ساخت مدرن‌ترین انواع شبکه عصبی پیچشی به شما آموزش داده می‌شود. در پایان این دوره همچنین می‌توانید از شبکه عصبی پیچشی موجود، برای پردازش تصویر و تشخیص افراد یا اشیا در آن، کار با عکس، فیلم و انیمیشن و ده‌ها کاربرد جذاب دیگر استفاده کنید. به طور کلی می‌توان گفت در پایان این دوره، مهارت‌های زیر در شما تقویت شده یا به مهارت‌های شما افزوده می‌شوند: یادگیری عمیق طراحی سیستم تشخیص چهره کار با شبکه عصبی پیچشی Tensorflow کشف شیء و بخش‌بندی تصویر

ویژگی‌های دوره

-گواهی‌نامه مکتب‌خونه -خدمات منتورینگ -پروژه محور -تمرین و آزمون -تالار گفتگو -تسهیل استخدام

فصول دوره

-فصل اول: مبانی شبکه عصبی کانولوشنال(CNN)
-فصل دوم: مدل‌های کانولوشن عمیق: مطالعات موردی
-فصل سوم: تشخیص اشیاء
-فصل چهارم: تشخیص چهره و انتقال استایل عصبی;

معرفی مدرس

Andrew Ng
اندرو ان جی استاد دانشکده علوم کامپیوتر دانشگاه استنفورد و سرپرست آزمایشگاه هوش مصنوعی استنفورد است. وی هم چنین بنیان‌گذار کورسرا (coursera.org) است و بر اساس گزارش تکنولوژی دانشگاه ام ای تی یکی از 35 مخترع برتر جوان دنیا هست. او دکتری خود را از دانشگاه کالیفرنیا برکلی گرفته و زمینه‌های پژوهش او هوش مصنوعی و علوم رباتیک است.

پیش‌نیازها

این آموزش چهارمین دوره از مجموعه تخصص یادگیری عمیق اندرو بوده و برای بهره‌بردن از آموزش‌های این دوره بهتر است یک پیش‌زمینه ریاضیات خوب داشته باشید. چراکه کار با شبکه‌های عصبی تا حدودی وارد حوزه مباحث ریاضیات خواهد شد. از طرف دیگر برای شروع آموزش یادگیری عمیق (Deep Learning) بهتر است ابتدا به مفاهیم یادگیری ماشین (Machine Learning) مسلط باشید. تسلط به زبان برنامه‌نویسی پایتون، جبر خطی و حسابان دیفرانسیل هم از مواردی هستند که به شما کمک خواهند کرد دوره آموزش شبکه عصبی پیچشی را با بهترین نتیجه و بیشترین اثربخشی به پایان برسانید.

روش ارزیابی و نمره‌دهی

حد نصاب قبولی در دوره: 70.0 نمره فارغ‌التحصیل شدن در این دوره نیاز به ارسال تمرین‌ها و پروژه‌های الزامی دارد.

نمونه گواهینامه

منبع: جاب ویژن
جاب ویژن
186,150 تومان
دریافت فایل
شنبه 23 تیر 1403، ساعت 00:40