نشان کن
کد آگهی: KP7019241188

استخدام مهندس یادگیری ماشین (ML Engineer-دورکاری)

استخدام مهندس یادگیری ماشین (ML Engineer-دورکاری) - مموری بریج | Memory Bridge
مموری بریج | Memory Bridge
در تهران
در وبسایت جابینجا  (پنج‌شنبه 31 مرداد 1404)
اطلاعات شغل:
نوع همکاری:  تمام وقت - دورکاری
مدرک تحصیلی مورد نیاز:  کارشناسی ارشد
مهارت‌های مورد نیاز:
Python
یادگیری ماشین
هوش مصنوعی
پیاده‌سازی
بازه حقوق:  از 50,000,000 تومان
پرداخت‌ها:  از ۵۰,۰۰۰,۰۰۰ تومان
متن کامل آگهی:
بازه حقوق 80 میلیون تا 120 میلیون

About You

  • The ideal candidate has evolved from senior software development into NLP/ML, bringing the architectural thinking and code craftsmanship needed to tackle complex memory persistence, multi-tier retrieval, and real-time personalization challenges that separate production systems from proof-of-concepts.
  •  You champion frequent deployments. You believe in shipping code regularly and improving through real-world feedback rather than seeking perfection.
  •  You solve problems creatively. You tackle challenges with a can-do attitude, recognizing when to build new features versus strengthening foundations.
Key Responsibilities

  •  Design and implement the core memory subsystem architecture, including storage tiers, retrieval pipelines, and privacy-aware filtering mechanisms
  •  Build evaluation frameworks to measure memory retrieval quality, relevance scoring, and augmentation effectiveness with clear metrics and benchmarks
  •  Implement sophisticated memory extraction and classification systems that identify, rank, and surface relevant user context from chat histories
  •  Research and adapt cutting-edge memory architectures from academic papers and open-source implementations (e.g., MemGPT, Reflexion, cognitive architectures)
  •  Architect the memory update pipeline that learns from user interactions, including relevance feedback, correction mechanisms, and adaptive privacy classification
  •  Design hybrid search strategies that combine semantic embeddings with structured metadata, graph relationships, and temporal patterns for optimal memory retrieval
  •  Collaborate with PM to define technical constraints and feasibility for memory system features
  •  Takes ownership of production reliability for AI features—comfortable being on-call for prompt failures, extraction issues, or integration breakdowns
  •  Understanding of AI system failure modes and fallback strategies—knows when to gracefully degrade vs. retry vs. escalate to human review
Requirements (Must-haves)

  •  5+ years total experience, with at least 3 years in software engineering and 2 years building ML/NLP systems
  •  Hands-on experience building LLM-powered systems with a focus on context management, memory persistence, or personalization features
  •  Production experience with vector databases (Pinecone, Weaviate, Chroma) and hybrid search systems combining semantic and keyword search
  •  Proven experience shipping LLM-powered features to production, with an understanding of prompt engineering, context window management, and API reliability patterns
  •  Hands-on experience with LLM orchestration frameworks (LangChain, LangGraph, Mem0, MemGPT, Letta) for building complex AI workflows
  •  Demonstrated ability to implement hybrid search systems combining dense vectors, sparse indices, and metadata filtering
  •  Strong debugging skills for RAG pipelines, prompt reliability, extraction accuracy, and function calling/MCP integrations
  •  Experience with agentic architectures, including tool calling, MCP (Model Context Protocol), and function orchestration for database access and external integrations
  •  Experience with privacy-preserving ML techniques or building systems with strict data isolation requirements
  •  Expert Python programming, plus working knowledge of JavaScript/TypeScript for API integration and JSON schema design for LLM tool definitions
Nice-to-Have Skills

  •  You’re familiar with underlying technologies like transformer networks, attention mechanisms, and how they contribute to models’ abilities to generate coherent responses, function calls, and other language tasks
  •  Experience with graph databases or knowledge graphs for representing user memory relationships
  •  Familiarity with testing LLM applications—prompt regression tests, evaluation datasets, and A/B testing for AI features
  •  Experience designing LLM-friendly APIs with structured outputs, streaming responses, and token usage optimization
  •  Experience with experiment tracking and model versioning for memory/retrieval systems
  •  Background in recommendation systems or personalization engines
  •  Master’s or PhD degree in physics, biology, CS, Electrical Engineering, etc., can be helpful but not required
Tech Stack & Tools
Core 

  • Python – Primary language for ML/AI development
  • FastAPI – For building high-performance async APIs
  • Git/GitHub – Version control and collaboration workflow
  • GitHub Actions – Familiarity with CI/CD automation pipelines
  • JSON – Standard for structured data exchange and API contracts
Databases

  • Vector Databases – Pinecone, Weaviate, Chroma, Qdrant
  • PostgreSQL – Primary relational database for structured data
  • MongoDB – Document store for flexible, user-defined memory structures
AI/ML Frameworks 

  • LLM Orchestration – LangChain, LangGraph, LlamaIndex, Haystack
  • Model Provider APIs – OpenAI, Anthropic, Cohere, and others
Nice to Have

  • Elasticsearch – Full-text search and log-based memory indexing
  • Docker – For local development and containerized deployment

این آگهی از وبسایت جابینجا پیدا شده، با زدن دکمه‌ی تماس با کارفرما، به وبسایت جابینجا برین و از اون‌جا برای این شغل اقدام کنین.

هشدار
توجه داشته باشید که دریافت هزینه از کارجو برای استخدام با هر عنوانی غیرقانونی است. در صورت مواجهه با موارد مشکوک،‌ با کلیک بر روی «گزارش مشکل آگهی» به ما در پیگیری تخلفات کمک کنید.
گزارش مشکل آگهی
تماس با کارفرما
این آگهی رو برای دیگران بفرست
نشان کن
گزارش مشکل آگهی
پنج‌شنبه 28 آذر 1404، ساعت 04:13